Innerhalb von drei Monaten nach Veröffentlichung der Patenterteilung kann nach § 59 Patentgesetz gegen das Patent Ein-
spruch erhoben werden. Der Einspruch ist schriftlich zur erklären und zu begründen. Innerhalb der Einspruchsfrist ist eine
Einspruchsgebühr in Höhe von 200 Euro zu entrichten (§ 6 Patentkostengesetz in Verbindung mit der Anlage zu § 2 Abs. 2
Patentkostengesetz).

(54) Bezeichnung: Vorrichtung zur Werkstück- oder Werkzeugmasskontrolle

(57) Hauptanspruch: Vorrichtung zur Werkstück- oder
Werkzeugmasskontrolle, bestehend aus:
a) einem einstückigen Tastkörper (1) mit einer vorderseiti-
gen Antastfläche (11) und einer rückseitigen Wegaufneh-
merfläche (12) mit einem darin liegenden Messfleck (121),
b) einem dem Messfleck (121) gegenüberliegend angeord-
neten berührungslos arbeitenden Wegaufnehmer (2),
c) einer Aufhängung (3), die den Tastkörper (1) mit dem
Wegaufnehmer (2) mechanisch verbindet,
wobei:
d) die Antastfläche (11) für einen mechanischen Kontakt
mit einem auf Maßhaltigkeit zu prüfenden Werkstück-/zeug
vorgesehen ist,
e) der Tastkörper (1) und/oder die Aufhängung (3) so aus-
geführt sind, dass der Abstand zwischen dem Messfleck
(121) und dem Wegaufnehmer (2) unter Einwirkung einer
im wesentlichen in Richtung der Verbindungsline Mess-
fleck (121) – Wegaufnehmer (2) wirkenden Kraft auf die An-
tastfläche (11) elastisch verändert werden kann und
f) der Wegaufnehmer (2) so ausgeführt ist, dass er eine Än-
derung des Abstands D zwischen dem Messfleck (121) und
dem Wegaufnehmer (2) registriert.
Beschreibung

[0004] Auch bei Werkzeugen kann eine Kontrolle auf Masshaltigkeit erforderlich sein, beispielsweise um in einem laufenden Produktionsprozess den Grad ihrer Abnutzung zu erfassen.

[0008] Um eine höhere Messgenauigkeit zu erzieren, sowie das Problem des starken Verschleisses des berührenden Tasters bei der vorgenannten Anordnung zu reduzieren, ist ebenfalls vorzubekannt, anstelle eines berührenden, insbesondere induktiv arbeitenden Tasters einen berührungsfreien Analogwegaufnehmer in einer äquivalenten Anordnung einzusetzen. Ein solcher berührungsfreier Analogwegaufnehmer arbeitet zwar verschiebeschwef und prinzipiell mit einer erhöhten Genauigkeit, bereitet aber im praktischen Einsatz ebenfalls Probleme, da der Taster bauartbedingt immer über eine endliche Fläche des Werkstücks oder Werkzeugs integriert, was zu Problemen führen kann, wenn dünnwandige Werkstücke oder Werkzeuge oder solche mit Bohrungen etc. auf Masshaltigkeit überprüft werden sollen. Insbesondere können Toleranzen in Materialstärken oder der elektrischen Leitfähigkeit des Werkstücks oder Werkzeugs zu ungenauen Messergebnissen führen.

Stand der Technik

Zur Erfassung der Abmaße einer Oberfläche wird der Messstift mit dem Gleitschuß auf die Oberfläche ge-
setzt. Der Messstift ist dabei gleitend in einer Hülse ge-
gelagert, die Bewegung des Messstifts beim Abfru-
hen der Oberfläche wird von einem Messwandler er-
fasst. Nachteilig an dieser Konstruktion ist die Hyste-
resebehafte mechanische Lagerung des Messstifts in
einer Hülse, die die erzielbare Messgenauigkeit li-
mitiert.

[0010] Aus der DE 2 237 051 A1 ist eine Vorrichtung zur Ermittlung der Abmessungen mechanischer Werkstücke bekannt. Auch diese Vorrichtung basiert auf einem gleitend gelagerten Messstift zum Abfüh-
ren der Oberfläche eines an der Vorrichtung vorbei-
geführten Werkstückes, dessen Bewegung berüh-
rungslos erfasst wird. Die Vorrichtung weist wieder-
um die mit einer mechanischen Lagerung des Mess-
stifts verbundenen Nachteile bezüglich der erzielba-
ren Messgenauigkeit auf.

Aufgabenstellung

[0011] Aufgabe der vorliegenden Erfindung ist es daher, eine Vorrichtung zur Werkstück- oder Werk-
zeugmasskontrolle anzugeben, die die vorgenannten Nachteile nicht aufweist, insbesondere eine Mess-
genauigkeit von besser als einem Mikrometer er-
reicht, die vollständig gekapselt ausgeführt werden kann, sowie auf einfache Weise in bestehende Pro-
duktionsanlagen integriert werden kann.

[0012] Gelöst wird diese Aufgabe durch eine Vor-
richtung, welche einen Tastkörper aufweist, wobei
dieser wiederum eine Antastfläche hat und anderer-
seits eine Wegaufnehmerfläche mit einem darin lie-

[0013] Der Tastkörper und/oder die Aufhängung sind so ausgeführt, dass der Abstand D zwischen dem Messfleck und dem Wegaufnehmer unter Ein-
wirkung einer im wesentlichen in Richtung der Ver-
bindungslinie Messfleck-Wegaufnehmer wirkenden Kraft auf die Antastfläche elastisch verändert werden kann. Dabei ist der Wegaufnehmer so ausgeführt und so angeordnet, dass er eine Änderung des Abstands D vorzugsweise berührungslos registriert. Weiterhin sind der Tastkörper und/oder die Aufhängung so ausge-
führt, dass der Wegaufnehmer unter einer durch elastische Verformung bedingten Änderung des Ab-
stands D stets den gleichen Bereich der Wegaufneh-
merfläche zur Abstands messung erfasst, nämlich
den Messfleck.

[0014] Vorteilhafterweise wird die erfindungsge-
mässe Vorrichtung in einer Anordnung eingesetzt, welche weiterhin eine Werkstück-/Werkzeugführung umfasst, welche zum Vorbereiten eines Werk-
stückes/Werkzeugs am Tastkörper längs einer Werk-
stück-/Werkzeugbahn geeignet ist. Dabei ist diese Werkstück/Werkzeugführung dazu eingerichtet, ein auf Masshaltigkeit zu prüfendes Werkstück/Werk-
zeug so am Tastkörper vorbeizuführen, dass das Werkstück/Werkzeug die Antastfläche mindestens an einem Auftreffpunkt berührt. Dabei soll die Berüh-
rung dergestalt sein, dass sich bei ihr eine elastische Verringerung des Abstand D zwischen Messfleck und Wegaufnehmer ergibt, welche vom Wegaufnehmer registriert werden kann. Die Ausformung der Antast-
fläche und/oder der Verlauf der Werkstück-/Werk-
zeugbahn ist dabei dergestalt, dass sich am Auftreff-
punkt ein Winkel W zwischen der Tangentialebene der Antastfläche am Auftreffpunkt und der Bewe-
gungsrichtung A des Werkstücks/Werkzeugs ergibt, der kleiner ist als 15 Grad, vorzugsweise kleiner ist als 10 Grad und insbesondere kleiner ist als 5 Grad. Dies bedeutet, dass das zu prüfende Werk-
stück/Werkzeug tangential, d.h. stets am Auftreff-
punkt vorbeigeführt wird, was einerseits durch eine geeignete Ausformung der Antastfläche oder ande-
erseits durch eine geeignete Wahl der Werk-
stück-/Werkzeugbahn realisiert werden kann.

[0015] Eine äquivalente Wirkung ergibt sich, wenn eine Vorrichtung gemäß des Hauptspruchs auf ei-
er Tasterführung bzw. Tasterhalterung montiert wird, wobei diese Tasterhalterung dazu vorgesehen ist, die erfindungsgemäße Vorrichtung an einem auf Mass-
haltigkeit zu prüfenden Werkstück/Werkzeug längs einer Tasterbahn vorbeizuführen. Nunnmehr wird jedo-
ch die erfindungsgemäße Vorrichtung auf einer solchen Tasterbahn am Werkstück/Werkzeug vorbei-
geführt, dass sich eine Berührung zwischen der An-
tastfläche und dem Werkstück/Werkzeug mindestens an einem Auftreffpunkt ergibt. Bei dieser Berührung soll sich eine elastische Verringerung des Abstands D zwischen dem Tastkörper, insbesondere dem Messfleck auf der Wegaufnehmerfläche und dem Wegaufnehmer ergeben. Diese Verringerung des Ab-
stands D wird vom Wegaufnehmer registriert. In dies-
sem Fall wird die erfindungsgemäße Vorrichtung so am Werkstück/Werkzeug vorbeigeführt, dass sich auch hier am Auftreffpunkt ein Winkel W zwischen der Tangentialebene der Antastfläche am Auftreff-
punkt und der Bewegungsrichtung A des Tastkörpers ergibt, der kleiner ist als 15°, vorzugsweise kleiner ist als 10° und insbesondere kleiner ist als 5°, d.h., die erfindungsgemäße Vorrichtung wird tangential am zu prüfenden Werkstück/Werkzeug vorbeigeführt.

[0016] In beiden Anordnungen hat es sich als be-
sonders vorteilhaft herausgestellt, wenn die Antast-
fläche am Auftreffpunkt des Werkstücks/Werkzeugs eine von Null verschiedene lokale Krümmung K auf-
weist. Dabei soll der Krümmungsradius R der Antast-
fläche am Auftreffpunkt grösser sein als 1 cm, vorzugsweise grösser als 5 cm und insbesondere grösser als 10 cm sein. Insbesondere vorteilhaft ist, wenn die Antastfläche ballig, vorzugsweise sogar als Kugelklotz ausgeführt ist. In diesem Fall kann die Relativbewegung von Werkstück/Werkzeug und erfindungsgemässer Vorrichtung auf einer Geraden verlaufen.

[0017] Eine vergleichbare Wirkung wird erzielt, wenn die Relativbewegung von Werkstück/Werkzeug und erfindungsgemässer Vorrichtung am Auftreffpunkt der Antastfläche eine von Null verschiedene lokale Krümmung aufweist. Dies ergibt sich insbesondere dann, wenn die Relativbewegung auf einer Kreisbahn erfolgt. In jedem Fall soll jedoch der Krümmungsradius R der Bahn der Relativbewegung am Auftreffpunkt grösser sein als 1 cm, vorzugsweise grösser als 5 cm und insbesondere grösser als 10 cm sein. Hier kann nunmehr auf eine lokale Krümmung der Antastfläche des Tastkörpers am Auftreffpunkt verzichtet werden. Insbesondere kann die Antastfläche plan ausgeführt sein.

[0020] Alternativ zu diesem Klassifikationsschritt kann die aufgenommene elastische Verringerung ΔD auch auf einer Anzeigeinheit ausgegeben werden oder mittels einer geeigneten elektronischen Vorrichtung weiterverarbeitet werden.

[0021] Das Verfahren erzielt die gleiche Wirkung, wenn die erfindungsgemässen Vorrichtung gegen das auf Masshaltigkeit zu prüfende Werkstück oder Werkzeug verfahren wird. Der verfahrensgemässen kleine Winkel W am Auftreffpunkt kann wiederum erzielt werden entweder durch eine gekrümmte Antastfläche der erfindungsgemässen Vorrichtung oder eine gekrümmbte Bahnführung beim Vorbeiführen der erfindungsgemässen Vorrichtung am zu prüfenden Werkstück/Werkzeug, insbesondere am Auftreffpunkt auf der Antastfläche.

[0022] Vorteilhaft ist auch hier, wenn der zugehörige Krümmungsradius R von Fläche oder Bahn grösser ist als 1 cm, vorzugsweise grösser ist als 5 cm und insbesondere grösser ist als 10 cm.

[0023] Als besonders günstig hat sich herausgestellt, wenn die aus der Berührung von Werkstück/Werkzeug und Antastfläche resultierende elastische Verringerung ΔD des Abstands D bei masshaltigem Werkstück/Werkzeug unter 1 mm beträgt, vorzugsweise unter 500 μm beträgt und insbesondere unter 100 μm beträgt.

[0025] Die erfindungsgemässer Vorrichtung zur Werkstück- oder Werkzeugmasskontrolle weist eine Reihe wesentlicher Vorteile auf. Der hochempfindli-

Ausführungsbeispiel

[0031] Weitere Merkmale und Vorteile der erfindungsgemäßen Vorrichtung, der erfindungsgemäßen Anordnung sowie das erfindungsgemäße Verfahren ergeben sich aus den Unteransprüchen so wie den nun folgenden Ausführungsbeispielen, die nicht einschränkend zu verstehen sind und anhand der Zeichnung erläutert werden. In dieser zeigen:

[0032] Fig. 1: einen Schnitt durch eine erfindungsgemäße Vorrichtung in Seitenansicht,

[0033] Fig. 2: eine schematische Darstellung der geometrischen Verhältnisse bei der erfindungsgemäßen Anordnung,

[0034] Fig. 3: eine schematische Darstellung einer ersten Realisierung einer erfindungsgemäßen Anordnung,

[0035] Fig. 4: eine schematische Darstellung einer zweiten Realisierung einer erfindungsgemäßen Anordnung,

[0036] Fig. 5: eine schematische Darstellung einer dritten Realisierung einer erfindungsgemäßen Anordnung

[0037] Fig. 6: eine erfindungsgemäße Vorrichtung integriert in einen Mehrspindeldrehautomaten in Seitenansicht.
[0038] Den Aufbau einer erfindungsgemäßen Vorrichtung, im folgenden kurz Taster genannt, ist aus Fig. 1 ersichtlich. Der Tastkörper 1 des Tasters ist als gewölbte Metallmembran ausgeführt. Insbesondere kann der Tastkörper 1 die Form eines Abschnittes einer Kugeloberfläche haben, wobei der Krümmungsradius der Kugel vorzugsweise im Bereich zwischen 5 und 50 cm liegt. Hierdurch ist der Krümmungsradius R1 der Antastfläche 11 am Auftreffpunkt 111 bestimmt, der sich an zentraler Stelle auf der Antastfläche 11 befindet und an welchem die Berührung zwischen dem auf Masshaltigkeit zu prüfenden Werkstück/Werkzeug und dem Tastkörper 1 erfolgen soll. Die Antastfläche 11 kann zur Erhöhung ihrer Verschleißfestigkeit speziell behandelt sein, insbesondere oberflächengehärtet oder hartstoffbeschichtet sein. Insbesondere in der Umgebung des Auftreffpunktes 111 kann eine solche Oberflächenbehandlung vorgesehen sein.

[0041] Zur Durchführung des erfindungsgemäßen Verfahrens wird ein Werkstück/Werkzeug 4 in Pfeilrichtung gegen den Taster verfahren. Das Werkstück/Werkzeug 4 trifft im Bereich des Auftreffpunkts 111 im wesentlichen tangential auf die Antastfläche 11, dabei sind Taster und Werkstück/Werkzeug 4 so relativ zueinander positioniert, dass sich bei masshaltigem Werkstück/Werkzeug 4 eine elastische Verformung ΔD des Abstands D von weniger als 1 mm, vorzugsweise von etwa 100 μm ergibt. Aufgrund des geringen Winkels W zwischen der Bewegungsrichtung A des Werkstücks/Werkszeugs und der Tangentialebene 112 im Auftreffpunkt 111 auf der Antastfläche 11 bewirkt die Berührung von Taster und Werkstück/Werkzeug praktisch nur eine solche Verformung der von Tastkörper 1 und Aufhängung 3 gebildeten Doppelkalotte, die in Richtung des Abstands D gerichtet ist. Durch die gewählte geringe elastische Verformung ΔD bei masshaltigem Werkstück/Werkzeug 4 ergibt sich nur ein ausserordentlich geringer Impulsübertrag vom Werkstück/Werkzeug 4 auf den Taster, so dass die mechanische Belastung sowohl von Werkstück/Werkzeug 4 als auch Taster gering bleiben. Dies erhöht einerseits die Messgenauigkeit, andererseits kann auf diese Weise der Verschleiss sowohl von Taster als auch von Werkstück/Werkzeug minimiert werden.
Der sich ergebende scharfe Rand an der Berührungsfläche von Tastkörper 1 und Aufhängung 3 hat die weitere vorteilhafte Wirkung, dass eventuell am Werkstück/Werkzeug 4 anhaftende Späne, Grate oder ähnliches beim Vorführen abgestrichen werden. Der Durchmesser des Tastkörpers 1 beträgt vorteilhafterweise einige Zentimeter beispielsweise 5 cm, so dass die abgestrichenen Späne etc. zu ihrem Abstand vom Auftreffpunkt 111 abgestrichen werden. Weiterhin ist der Tastkörper 1 vorzugsweise so angeordnet, dass die Antastfläche 11 senkrecht steht, so dass abgestrichene Späne etc. durch die Schwerkraft herabfallen, insbesondere nicht auf der Antastfläche 11 liegen bleiben können.

Durch die Wahl der Materialien von Tastkörper 1 und Aufhängung 3 sowie deren jeweiliger Formgebung können die elastischen Eigenschaften der Kombination aus Tastkörper 1 und Aufhängung 3 in weiten Grenzen variiert und an die Erfordernisse des Mess- und Prüfvorgangs angepasst werden. Solange sichergestellt ist, dass das Werkstück/Werkzeug 4 so gegen den Taster bewegt wird, dass sich eine rein elastische Verformung der Anordnung aus Tastkörper 1 und Aufhängung 3 ergibt, erfolgt die Überprüfung der Masshaltigkeit des Werkstücks/Werkzeugs 4 praktisch völlig hysteresefrei.

Fig. 2 verdeutlicht die geometrischen Verhältnisse der erfindungsgemäßen Anordnung. Gezeigt ist ein erfindungsgemäßer Taster, gegen dessen Tastkörper 1 ein Werkstück/Werkzeug 4 bewegt wird, so dass sich mindestens an einem Auftreffpunkt 111 eine Berührung ergibt. Dabei wird das Werkstück/Werkzeug 4 längst der Werkstück-/Werkzeugbahn 51 geführt. Diese weist am Auftreffpunkt 111 einen lokalen Krümmungsradius R2 auf. Zur Vereinfachung ist in Fig. 2 eine Bahn 51 gezeigt, die über ihre gesamten Länge einer Kreisbahn mit konstantem Radius R2 entspricht. Am Auftreffpunkt 111 ist die Richtung der Bewegung des Werkstücks/Werkzeugs 4 durch den Vektor A gegeben, der durch einen Pfeil gekennzeichnet ist. Dieser Vektor A schiesst einen Winkel W mit der Tangentialebene 112 an die Antastfläche 11 um den Auftreffpunkt 111 ein. Die Antastfläche 11 wiederum weist selbst eine lokale Krümmung im Auftreffpunkt 111 auf, deren Krümmungsradius mit R1 bezeichnet ist. Zur Vereinfachung weist im gezeigten Beispiel die gesamte Antastfläche 11 eine einheitliche Krümmung mit dem Krümmungsradius R1 auf.

Anhand von Fig. 2 kann das erfindungsgemäße Verfahren verdeutlicht werden. Das zu prüfende Werkstück/Werkzeug 4 und die Antastfläche 11 des Tastkörpers 1 werden relativ zueinander bewegt. Diese Relativbewegung wird mittels dazu geeigneter Vorrichtungen ausgeführt, die aus Fig. 2 nicht ersichtlich sind. Eine konkrete Realisierung ist aus Fig. 6 ersichtlich und wird im folgenden noch genauer beschrieben werden. Im Ausführungsbeispiel gemäß Fig. 2 wird das Werkzeug 4 gegen die Antastfläche 11 des Tastkörpers 1 bewegt. Eine gleiche Wirkung wird auch bei einer äquivalenten Bewegung der Antastfläche 11 gegen das zu prüfende Werkstück/Werkzeug 4 erreicht.

Der Tastkörper 1 ist Teil einer erfindungsgemäßen Vorrichtung, kurz eines Tasters, wie er aus Fig. 1 ersichtlich ist. Die relative Bewegung von Werkstück/Werkzeug 4 und Taster erfolgt derart, dass sich am Auftreffpunkt 111 ein Winkel W zwischen der Tangentialebene 112 der Antastfläche 11 und der Richtung A der Relativbewegung von Taster und Werkstück/Werkzeug 4 ergibt, der kleiner ist als 15°, vorzugsweise kleiner als 10°, und insbesondere kleiner als 5°.

In einer möglichen Ausgestaltung des erfindungsgemäßen Verfahrens wird die im letzten Verfahrensschritt aufgenommene elastische Verringerung ΔD mit einem Referenzwert ΔD(Referenz) verglichen, wobei dieser Referenzwert ein masshaltiges Werkstück/Werkzeug 4 charakterisiert. Das zu vermessende Werkstück/Werkzeug 4 wird als „nicht masshaltig“ klassifiziert, wenn die aufgenommene elastische Verringerung ΔD um mehr als eine voreingestellte Toleranzgrenze ΔD(Toleranz) vom Referenzwert ΔD(Referenz) abweicht. Der Wert für ΔD(Toleranz) kann vorzugsweise von einem Benutzer vorgegeben werden und an die Anforderungen bezüglich der Masshaltigkeit des zu vermessenden Werkstücks/Werkzeugs 4 angepasst werden. Typische Werte liegen hier in der Größenordnung von hundertstel Millimetern und darunter.

Alternativ zu dem Vergleich der gemessenen elastischen Verringerung ΔD mit einem Referenzwert und nachfolgender Klassifikation kann auch die gemessene elastische Verringerung ΔD auf einer Anzeigeinheit ausgegeben werden oder auf einer geeigneten elektronischen Vorrichtung weiter verarbeitet werden.

Die Tatsache, dass zwischen dem Wegaufnehmer 2 und dem zu vermessenden Werkstück/Werkzeug 4 stets der Tastkörper 1 mit seiner Wegaufnehmerflächen 12 angeordnet ist, ermöglicht ein besonders einfaches Verfahren zur Ermittlung der

[0052] Fig. 3 zeigt, dass die erfindungsgemässe Anordnung sowie das erfindungsgemässe Verfahren beispielsweise dadurch realisiert werden können, dass das zu prüfende Werkstück/Werkzeug 4 auf einer Bahn 51 am Taster vorbeigeführt wird, die am Auftreffpunkt 111 einen Winkel W mit der Tangentialebene 112 einschliesst, der den genannten Anforderungen entspricht. Insbesondere ist dies gegeben, wenn das Werkstück/Werkzeug 4 tangential (W = O) am Auftreffpunkt vorbeigeführt wird, wobei die Bahn 51 am Auftreffpunkt 111 einen endlichen lokalen Krümmungsradius R2 aufweist. Dabei kann der Tastkörper 1 insbesondere so ausgeführt sein, dass die Antastfläche 11 im wesentlichen plan ist, also keine Krümmung am Auftreffpunkt 111 aufweist.

[0053] Wie aus Fig. 4 ersichtlich ist, können die erfindungsgemässe Vorrichtung sowie das erfindungsgemässe Verfahren auch realisiert werden, wenn die Bahn der Relativbewegung von Werkstück/Werkzeug 4 und Taster keine lokale Krümmung am Auftreffpunkt 111 aufweist. In Fig. 4 wird das Werkstück/Werkzeug linear gegen den Taster bewegt, so dass sich am Auftreffpunkt 111 eine gegenseitige Berührung ergibt. Insbesondere kann am Auftreffpunkt 111 der Vektor A in der Tangentialebene 112 liegen. Im gezeigten Ausführungsbeispiel liegt die gesamte Bahn 51 in der Tangentialebene 112. Dabei weist jedoch die Antastfläche 11 des Tastkörpers 1 zumindest am Auftreffpunkt 111 eine lokale Krümmung auf, die durch einen endlichen Krümmungsradius R1 bezeichnet wird.

[0054] Aus Fig. 5 ist ersichtlich, dass die gleiche Wirkung erzielt werden kann, wenn der Taster gegen das zu vermessende Werkstück/Werkzeug 4 längs einer Tasterbahn 61 bewegt wird, die der Bahn 51 entspricht, wobei der Vektor der Bewegungsrichtung A zumindest am Auftreffpunkt 111 in der Tangentialebene 112 liegt. Insbesondere ist dies erfüllt, wenn die Bahn 61 vollständig in der Tangentialebene 112 verläuft.

[0055] Fig. 6 zeigt einen erfindungsgemässen Taster integriert in einen Mehrspindeldrehautomaten. Eine teilerförmige Werkstück/Werkzeugführung 5 ist um eine Drehachse 52 drehbar gelagert. Auf diesem Teiler sind wiederum mehrere Werkstück/Werkzeughalterungen 7 angeordnet, die einzeln um weitere Drehachsen 71 drehbar gelagert sein können. Entsprechend den Werkstück/Werkzeughalterungen 7 auf der Werkstück/Werkzeugführung 5 sind Bearbeitungsstationen 8 angeordnet, an denen einzelne Bearbeitungsschritte ausgeführt werden können. Im gezeigten Ausführungsbeispiel ist an einer Bearbeitungsstation 8 ein erfindungsmässer Taster mittels einer starren Tasterhalterung 6 angebracht. Zwischen zwei Bearbeitungsschritten wird die Werkstück/Werkzeugführung 5 um die Achse 52 gedreht, so dass sich ein zu bearbeitendes Werkstück 4 von einer Bearbeitungsstation 8 zur nächsten bewegt. Dabei wird das durch den Pfeil gekennzeichnete Werkstück 4 am erfindungsgemässen Taster vorbeigeführt, so dass sich eine Berührung zwischen Werkstück 4 und Tastkörper 1 ergibt, wie sie zur Durchführung des erfindungsgemässen Verfahrens erforderlich ist. Bei dieser Berührung ergibt sich eine elastische Verformung ΔD des Abstands D im Taster, welche mittels dem nachgeschalteten elektronischen Steuergerät 21 ausgewertet wird. Dieses elektronische Steuergerät 21 kann einen zusätzlichen Ein gang aufweisen, mittels welchem ein Referenzwert ΔD (Referenz) eingerechnet oder eingestellt wird. Im gezeigten Ausführungsbeispiel wird die gemessene elastische Verformung ΔD vom elektronischen Steuergerät 21 ausgegeben und auf einem sogenannten Toolmonitor visualisiert. Dieser Toolmonitor zeichnet die Einfederung ΔD des Tasters während der Berührung als Messkurve auf. Wird eine Mindesteinfederung nicht erreicht, so gilt das Werkstück als zu kurz oder als in die Werkstückhalterung 7 zurückgeschoben. Überschreitet die elastische Verformung ΔD einen maximalen Wert, so gilt das Werkstück als nicht ausreichend bearbeitet oder als in der Werkstückhalterung verschoben.

Patentansprüche

1. Vorrichtung zur Werkstück- oder Werkzeug- maßkontrolle, bestehend aus:
 a) einem einstügcigen Tastkörper (1) mit einer vorder-
seitigen Antastfläche (11) und einer rückseitigen Wegaufnehmerfläche (12) mit einem darin liegenden Messfleck (121),
b) einem dem Messfleck (121) gegenüberliegend angeordneten berührungslos arbeitenden Wegaufnehmer (2),
c) einer Aufhängung (3), die den Tastkörper (1) mit dem Wegaufnehmer (2) mechanisch verbindet, wobei:
d) die Antastfläche (11) für einen mechanischen Kontakt mit einem auf Maßhaltigkeit zu prüfenden Werkstück-/zeug vorgesehen ist,
e) der Tastkörper (1) und/oder die Aufhängung (3) so ausgeführt sind, dass der Abstand zwischen dem Messfleck (121) und dem Wegaufnehmer (2) unter Einwirkung einer im wesentlichen in Richtung der Verbindungslinie Messfleck (121) – Wegaufnehmer (2) wirkenden Kraft auf die Antastfläche (11) elastisch verändert werden kann und
f) der Wegaufnehmer (2) so ausgeführt ist, dass er eine Änderung des Abstands D zwischen dem Messfleck (121) und dem Wegaufnehmer (2) registriert.

2. Vorrichtung gemäß Anspruch 1, dadurch gekennzeichnet, dass der Tastkörper (1) als Memran in Form einer Kugelklotze ausgebildet ist.

3. Vorrichtung gemäß Anspruch 1, dadurch gekennzeichnet, dass die Aufhängung (3) als Memran in Form einer Kugelklotze verbunden ist.

4. Vorrichtung gemäß Anspruch 1, dadurch gekennzeichnet, dass die Antastfläche (11) verschleißfest ausgeführt ist.

5. Vorrichtung gemäß Anspruch 1, dadurch gekennzeichnet, dass der Tastkörper (1) und die Aufhängung (3) ein Gehäuse bilden, in welchem der Wegaufnehmer (2) angeordnet ist und welches mit darin angeordnetem Wegaufnehmer (2) hermetisch verschlossen ist, so dass der Wegaufnehmer (2) beispielsweise vor Küh-/Schmiermittel und Rückständen aus der Werkstückbearbeitung geschützt ist.

6. Vorrichtung gemäß Anspruch 1, dadurch gekennzeichnet, dass der Wegaufnehmer (2) als Analogwegaufnehmer ausgeführt ist.

7. Vorrichtung gemäß Anspruch 1, dadurch gekennzeichnet, dass für die Auswertung der vom Wegaufnehmer (2) registrierten Änderung des Abstands D ein elektronisches Steuergerät (21) vorgesehen ist.

8. Anordnung bestehend aus
a) einer Vorrichtung gemäß Anspruch 1 und
b) einer Werkstück-/Werkzeugführung (5) zum Vorbeiführen eines Werkstücks/Werkzeugs am Tastkörper (1) längs einer kreisbogenförmigen Werkstück-/Werkzeugbahn (51),
c) wobei die Werkstück-/Werkzeugführung (5) dazu eingerichtet ist, ein auf Maßhaltigkeit zu prüfendes Werkstück/Werkzeug (4) so am Tastkörper (1) vorzuführen, dass das Werkstück/Werkzeug (4) die Antastfläche (11) mindestens an einem Auftreffpunkt (111) berührt und sich bei dieser Berührung eine elastische Verringerung des Abstands D zwischen Messfleck (121) und Wegaufnehmer (2) ergibt.

9. Anordnung bestehend aus
a) einer Vorrichtung gemäß Anspruch 1,
b) einer Tasterführung (6) zum Vorbeiführen dieser Vorrichtung an einem auf Maßhaltigkeit zu prüfenden Werkstück/Werkzeug (4) längs einer Tasterbahn (61),
c) einer Werkstück-/Werkzeughalterung (7), in der das Werkstück/Werkzeug (4) insbesondere während des Vorbeiführens gehalten ist,
d) wobei die Tasterführung (6) dazu eingerichtet ist, die Vorrichtung gemäß Anspruch 1 so am Werkstück/Werkzeug (4) vorzuführen, dass die Antastfläche (11) des Tastkörpers (1) das in der Werkstück-/Werkzeughalterung (7) gehaltene Werkstück/Werkzeug (4) mindestens an einem Auftreffpunkt (111) berührt und sich bei dieser Berührung eine elastische Verringerung des Abstands D zwischen Memran (1) und Wegaufnehmer (2) ergibt.

10. Verfahren zur Werkstück- oder Werkzeugmaßkontrolle mittels einer Vorrichtung gemäß Anspruch 1, welches auf der Aufnahme der elastischen Verringerung ΔD des Abstands D beruht, die folgenden Verfahrensschritte aufweisend:
a) Aufnahme eines Nullwerts D1, der im wesentlichen durch den ungestörten Abstand zwischen Messfleck (121) und Wegaufnehmer (2) gegeben ist,
b) Aufnahme eines Maximalwerts D2, der im wesentlichen durch den Extremwert des Abstands D während des Kontakts zwischen Werkstück/Werkzeug (4) und Antastfläche (11) gegeben ist, und
c) Bestimmung der elastischen Verringerung ΔD als Differenz zwischen D1 und D2.

Es folgen 6 Blatt Zeichnungen.
Fig. 1
Fig. 6